THE

AUSTRALIAN CAPITAL TERRITORY 2004 AMBIENT AIR QUALITY REPORT

AGAINST THE

AMBIENT AIR QUALITY NATIONAL ENVIRONMENT PROTECTION MEASURE

JUNE 2005

Section A - Monitoring Summary

This 2004 Ambient Air Quality National Environment Protection Measure (NEPM) annual report has been prepared with reference to the national Peer Review Committee's (PRC) *Technical Paper No. 8 – Annual Reports* (October 2002).

This report covers five of the six criteria pollutants, namely carbon monoxide, nitrogen dioxide, ozone, particulate matter less than 10 microns (PM_{10}) and for the first time particulate matter less than 2.5 microns ($PM_{2.5}$). Lead monitoring ceased in 2002 with levels significantly less then the national standard and sulfur dioxide has never been measure due to a lack of industry.

With a population of 322,492¹ Canberra only requires one performance monitoring station (PMS). In regions where only a single PMS is required, the PRC recommends that such a station be located to be generally representative of upper bound (GRUB) pollutants concentrations.

By using GRUB stations to monitor the ambient air across a region we can be reasonably sure that, if the NEPM Standards are met at those sites, then in theory most of the total population of the region would be exposed to air at or below these pollution levels. In this way the NEPM's desired environmental outcome of adequate protection of human health and wellbeing should be assured.

Maximums measured at the existing station at Monash are at the upper bound of levels historically recorded in Canberra and it has been designated as the ACT's NEPM PMS.

Monash is located in southern Canberra and sits centrally in the Tuggeranong Valley. The station is located approximately 250 metres north of Isabella Drive and 150 metres west of Cockcroft Avenue on vacant land.

The Monash station has been operational since 1996 and is sited in accordance with AS2922-1987 (*Ambient Air - Guide for Siting of Sampling Sites*). It is intended that this remain a permanent monitoring and trend site for the ACT.

The ACT Government monitoring network is NATA accredited.

_

Source Australian Bureau of Statistics, Publication number 3218.0 Regional Population Growth, Friday 22 March 2004

Section B - Assessment of Compliance with Goal and Standards

Annual compliance summary for 8-hour carbon monoxide

NEPM standard - 9.0 ppm

Region/ Performance	Data availability rates (% of hours)					Number of exceedences	Performance against the
monitoring station	Q1	Q2	Q3	Q4	Annual	(days)	standards and goal
Canberra							
Monash	95.6	94.3	91.0	95.7	94.1	0	Met

Annual compliance summary for 1-hour and 1-year nitrogen dioxide

NEPM standard - 1hour 0.12 ppm, 1year 0.03 ppm

Region/ Performance monitoring		Data availability rates (% of hours)			es	Annual mean	Number of 1-hour	Performance against the standards and goal	
station	Q1	Q2	Q3	Q4	Annual	Concentration (ppm)	exceedences (days)	1- hour	1-year
Canberra									
Monash	94.3	92.7	89.5	90.6	91.8	0.017	0	Met	Met

Annual compliance summary for 1-hour and 4-hour ozone

NEPM standard - 1-hour 0.10 ppm, 4-hour 0.08 ppm

						Num	ber of	Performance against	
Region/		Data	availab	oility r	ates	exceedences		the standards and	
Performance	(% of hours)				(days)		goal		
monitoring station	Q1	Q2	Q3	Q4	Annual	1-hour	4-hour	1-hour	4-hour
<u>Canberra</u>									
Monash	95.6	95.6 94.0 91.0 95.7 94.1		0	0	Met	Met		

Annual compliance summary for 24-hour PM₁₀*

NEPM standard 50 μg/m³

Region/ Data availability rates Performance (% of days) Output Outpu				ntes	Number of exceedences	Performance against the standards and	
monitoring station	Q1	Q2	Q3	Q4	Annual	(days)	goal
<u>Canberra</u>							
Monash	97.8	100	100	100	99.5	3	Met

^{*} TEOM data adjusted in accordance with Technical paper No. 10

Annual compliance summary for 24-hour and 1-year PM_{2.5}* NEPM standard - 24hour 25 $\mu g/m^3$, 1year 8 $\mu g/m^3$

Region/ Performance monitoring		Data	availa (% of	bility rat days)	es	Annual mean Concentration	Number of 24-hour
station	Q1	Q2	Q3	Q4	Annual	$(\mu g/m^3)$	exceedences (days)
Canberra							
Monash	90.1	87.9	98.9	95.7	93.1	8.2	15

^{*} All PM_{2.5} data has been invalidated due to a failure to meet filter conditioning criteria.

Section C - Analysis Of Air Quality Monitoring

The ACT is making steady progress towards achieving the goal of the NEPM, which is to achieve the standards by June 2008. With the exception of PM_{10} all parameters measured are well below the standards and all parameters met the NEPM goal.

Historical monitoring indicates that Canberra experiences elevated PM₁₀ levels due to emission from domestic wood heaters with two exceedences recorded during the winter months. However due to ongoing drought conditions elevated levels are also being recorded due to dust storms with a third exceedence of the standard recorded on 30 November.

All PM_{2.5} data collected during the reporting period has been invalidated due to a failure to meet filter conditioning criteria. However the data has been analysed and included in the report for comparison against the advisory reporting standards.

Annual summary statistics for daily peak 8-hour carbon monoxide NEPM standard 9.0 ppm

Region/	Number of	Highest	Highest	2 nd Highest	2 nd Highest
Performance monitoring	valid days	(ppm)	(date/	(ppm)	(date/
station		41 /	time)	41 /	time)
<u>Canberra</u>					
Monash	359	3.2	22May:02	3.0	23 May:04

Annual summary statistics for daily peak 1-hour nitrogen dioxide NEPM standard 0.12 ppm

Region/	Number of	Highest	Highest	2 nd Highest	2 nd Highest
Performance	valid days				
monitoring		(ppm)	(date/	(ppm)	(date/
station			time)		time)
Canberra					
Monash	354	0.040	25 Mar:21	0.039	22 Apr :19

Annual summary statistics for daily peak 1-hour ozone NEPM standard 0.10 ppm

Region/	Number of	Highest	Highest	2 nd Highest	2 nd Highest
Performance	valid days				
monitoring		(ppm)	(date/	(ppm)	(date/
station			time)		time)
Canberra					
Monash	358	0.064	7 Feb:12	0.062	19 Feb:14

Annual summary statistics for daily peak 4-hour ozone

NEPM standard 0.08 ppm

Region/	Number of	Highest	Highest	2 nd Highest	2 nd Highest
Performance	valid days				
monitoring		(ppm)	(date/	(ppm)	(date/
station			time)		time)
Canberra					
Monash	358	0.059	19 Feb:16	0.054	3 Jan:14

Annual summary statistics for 24-hour PM_{10}

NEPM standard 50 μg/m³

Region/	Number of	Highest	Highest	6 th Highest	6 th Highest
Performance monitoring station	valid days	$(\mu g/m^3)$	(date)	$(\mu g/m^3)$	(date)
<u>Canberra</u>					
Monash	364	52	30 Nov	48.0	7 May

Annual summary statistics for 24-hour $PM_{2.5}$

NEPM standard 25 μg/m³

Region/	Number of	Highest	Highest	6 th Highest	6 th Highest
Performance monitoring station	valid days	$(\mu g/m^3)$	(date)	$(\mu g/m^3)$	(date)
<u>Canberra</u>					
Monash	341	38.3	22 July	33.5	22 May

Percentiles of daily peak pollutant concentration for Monash 2004

Data	Max	99 th	98 th	95 th	90 th	75 th	50 th
recovery	conc.	percen	percen	percen	percen	percen	percen
rates		tile	tile	tile	tile	tile	tile
(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
98.1	3.2	2.7	2.5	2.0	1.6	0.9	0.5
96.7	0.040	0.033	0.031	0.028	0.026	0.022	0.018
98.1	0.064	0.056	0.054	0.048	0.044	0.038	0.030
98.1	0.060	0.053	0.051	0.045	0.042	0.036	0.029
99.7	52.0	48.2	46.0	33.8	28.5	20.7	14.7
93.4	38.3	35.8	31.5	23.5	16.6	9.5	6.2
	recovery rates (%) 98.1 96.7 98.1 98.1 99.7	recovery conc. rates (%) (ppm) 98.1 3.2 96.7 0.040 98.1 0.064 98.1 0.060 99.7 52.0	recovery conc. percen tile (%) (ppm) (ppm) 98.1 3.2 2.7 96.7 0.040 0.033 98.1 0.064 0.056 98.1 0.060 0.053 99.7 52.0 48.2	recovery rates (%) (ppm) (ppm) percen tile (ppm) (ppm) 98.1 3.2 2.7 2.5 96.7 0.040 0.033 0.031 98.1 0.064 0.056 0.054 98.1 0.060 0.053 0.051 99.7 52.0 48.2 46.0	recovery rates (%) conc. (ppm) percen tile (ppm) percen tile (ppm) percen tile (ppm) percen tile (ppm) 98.1 3.2 2.7 2.5 2.0 96.7 0.040 0.033 0.031 0.028 98.1 0.064 0.056 0.054 0.048 98.1 0.060 0.053 0.051 0.045 99.7 52.0 48.2 46.0 33.8	recovery rates (%) conc. (ppm) percen tile (ppm) 98.1 3.2 2.7 2.5 2.0 1.6 96.7 0.040 0.033 0.031 0.028 0.026 98.1 0.064 0.056 0.054 0.048 0.044 98.1 0.060 0.053 0.051 0.045 0.042 99.7 52.0 48.2 46.0 33.8 28.5	recovery rates (%) conc. (ppm) percen tile (ppm) <t< td=""></t<>

^{*} All PM_{2.5} data has been invalidated due to a failure to meet filter conditioning criteria.